Nov
7
Kruskal贪心算法求最小生成树
#include <stdio.h>
#include <stdlib.h>
/*
* Kruskal贪心算法求最小生成树(heap+并查集)
* 测试输入数据:
6 10 //6个顶点10条边
1 5 2 //从顶点1到顶点5的边权重为2
2 4 3
4 5 1
0 3 6
2 3 7
5 2 6
4 0 7
1 3 5
1 2 4
3 5 9
*/
struct edge {
int start, end, weight;
};
void siftdown (struct edge *a, int n, int i) {
struct edge t;
if (i < 1 || i > n) return;
while (i * 2 <= n) {
i *= 2;
if (i + 1 <= n && a[i].weight > a[i + 1].weight) i++;
if (a[i].weight < a[i/2].weight ) {
t = a[i];
a[i] = a[i/2];
a[i/2] = t;
}
else {
break;
}
}
}
void siftup (struct edge *a, int n, int i) {
struct edge t;
if (i < 1 || i > n) return;
while (i > 1) {
if (a[i].weight < a[i/2].weight) {
t = a[i];
a[i] = a[i/2];
a[i/2] = t;
}
else {
break;
}
i /= 2;
}
}
void makeheap(struct edge *a, int n) {
int i;
for (i = n / 2; i >= 1; --i) {
siftdown(a, n, i);
}
}
struct edge pop(struct edge *a, int *n) {
struct edge t;
t = a[1];
a[1] = a[*n];
(*n)--; //第二次挂在这里,不能写*n--(*n; n-=1;), 要写(*n)--
siftdown(a, *n, 1);
return t;
}
void dump(struct edge *a, int n) {
int i;
for (i = 0; i < n; ++i) {
printf("edge (%d, %d), %d\n", a[i].start, a[i].end, a[i].weight);
}
}
void initUnionSet(int a[], int n) {
int i;
for (i = 0; i < n; ++i) {
a[i] = i;
}
}
int getFather(int a[], int x) {
return a[x] == x ? x : (a[x] = getFather(a, a[x]));
}
void merge(int a[], int x, int y) {
x = getFather(a, x);
y = getFather(a, y);
a[x] = y;
}
int haveCommonAncestor(int a[], int x, int y) {
return (getFather(a, x) == getFather(a, y) ? 1 : 0);
}
int main () {
int m, n, i, k, *father;
struct edge *input, *output, t;
scanf("%d%d", &m, &n);
input = (struct edge *)malloc(sizeof(struct edge) * (n + 1));
for (i = 1; i <= n; ++i) {
scanf("%d%d%d", &input[i].start, &input[i].end, &input[i].weight);
}
makeheap(input, n);
dump(input+1, n);
printf("end input\n");
int n1 = n;
output = (struct edge *)malloc(sizeof(struct edge) * (m - 1));
father = (int *)malloc(sizeof(int) * n);
initUnionSet(father, m);
k = 0;
printf("\nStart:\n");
while (n1 > 0) {
t = pop(input, &n1);
printf("edge (%d,%d), %d ", t.start, t.end, t.weight);
if (0 == haveCommonAncestor(father, t.start, t.end)) {
printf("added in\n");
output[k] = t;
k++;
merge(father, t.start, t.end);
if (k == m - 1) {
printf("~~ok~~\n");
break;
}
}
else {
printf("ignored\n");
}
}
printf("\nresult:\n");
dump(output, k);
free(input);
free(output);
free(father);
return 0;
}
#include <stdlib.h>
/*
* Kruskal贪心算法求最小生成树(heap+并查集)
* 测试输入数据:
6 10 //6个顶点10条边
1 5 2 //从顶点1到顶点5的边权重为2
2 4 3
4 5 1
0 3 6
2 3 7
5 2 6
4 0 7
1 3 5
1 2 4
3 5 9
*/
struct edge {
int start, end, weight;
};
void siftdown (struct edge *a, int n, int i) {
struct edge t;
if (i < 1 || i > n) return;
while (i * 2 <= n) {
i *= 2;
if (i + 1 <= n && a[i].weight > a[i + 1].weight) i++;
if (a[i].weight < a[i/2].weight ) {
t = a[i];
a[i] = a[i/2];
a[i/2] = t;
}
else {
break;
}
}
}
void siftup (struct edge *a, int n, int i) {
struct edge t;
if (i < 1 || i > n) return;
while (i > 1) {
if (a[i].weight < a[i/2].weight) {
t = a[i];
a[i] = a[i/2];
a[i/2] = t;
}
else {
break;
}
i /= 2;
}
}
void makeheap(struct edge *a, int n) {
int i;
for (i = n / 2; i >= 1; --i) {
siftdown(a, n, i);
}
}
struct edge pop(struct edge *a, int *n) {
struct edge t;
t = a[1];
a[1] = a[*n];
(*n)--; //第二次挂在这里,不能写*n--(*n; n-=1;), 要写(*n)--
siftdown(a, *n, 1);
return t;
}
void dump(struct edge *a, int n) {
int i;
for (i = 0; i < n; ++i) {
printf("edge (%d, %d), %d\n", a[i].start, a[i].end, a[i].weight);
}
}
void initUnionSet(int a[], int n) {
int i;
for (i = 0; i < n; ++i) {
a[i] = i;
}
}
int getFather(int a[], int x) {
return a[x] == x ? x : (a[x] = getFather(a, a[x]));
}
void merge(int a[], int x, int y) {
x = getFather(a, x);
y = getFather(a, y);
a[x] = y;
}
int haveCommonAncestor(int a[], int x, int y) {
return (getFather(a, x) == getFather(a, y) ? 1 : 0);
}
int main () {
int m, n, i, k, *father;
struct edge *input, *output, t;
scanf("%d%d", &m, &n);
input = (struct edge *)malloc(sizeof(struct edge) * (n + 1));
for (i = 1; i <= n; ++i) {
scanf("%d%d%d", &input[i].start, &input[i].end, &input[i].weight);
}
makeheap(input, n);
dump(input+1, n);
printf("end input\n");
int n1 = n;
output = (struct edge *)malloc(sizeof(struct edge) * (m - 1));
father = (int *)malloc(sizeof(int) * n);
initUnionSet(father, m);
k = 0;
printf("\nStart:\n");
while (n1 > 0) {
t = pop(input, &n1);
printf("edge (%d,%d), %d ", t.start, t.end, t.weight);
if (0 == haveCommonAncestor(father, t.start, t.end)) {
printf("added in\n");
output[k] = t;
k++;
merge(father, t.start, t.end);
if (k == m - 1) {
printf("~~ok~~\n");
break;
}
}
else {
printf("ignored\n");
}
}
printf("\nresult:\n");
dump(output, k);
free(input);
free(output);
free(father);
return 0;
}
注:下面这段代码是之前写的,写了一个简单的链表+插入来实现,本来是想用队列式链表然后再排序的,但是太麻烦了,干脆直接插入排序,所以那个tail也就一点用也没有了(用在tree那个list里看起来还更NC)。其实更好的办法应该是根据输入的n动态分配足够的空间,全部输入以后然后用heap或者用qsort。
#include <stdio.h>
#include <stdlib.h>
/*
* Kruskal贪心算法求最小生成树
* 测试输入数据:
6 10 //6个顶点10条边
1 5 2 //从顶点1到顶点5的边权重为2
2 4 3
4 5 1
0 3 6
2 3 7
5 2 6
4 0 7
1 3 5
1 2 4
3 5 9
*/
//链表
struct edge {
int start, end, weight;
struct edge *next;
};
struct linklist {
struct edge *head, *tail;
};
void initLinkList(struct linklist *p) {
p->head = (struct edge *) malloc(sizeof(struct edge));
p->head->next = NULL;
p->tail = p->head;
}
void insert(struct linklist *p, struct edge e) {
struct edge *q = p->head, *t;
while (q->next != NULL) {
if (q->next->weight > e.weight) {
break;
}
q = q->next;
}
t = (struct edge *) malloc(sizeof(struct edge));
*t = e;
t->next = q->next;
q->next = t;
if (t->next == NULL) {
p->tail = t;
}
}
void dump(struct linklist *p) {
struct edge *q = p->head->next;
while (q != NULL) {
printf("q = %p, ", q);
printf("edge (%d, %d), %d\n", q->start, q->end, q->weight);
q = q->next;
}
}
//并查集
void initUnionSet(int a[], int n) {
int i;
for (i = 0; i < n; ++i) {
a[i] = i;
}
}
int getFather(int a[], int x) {
if (a[x] == x) {
return x;
}
else {
a[x] = getFather(a, a[x]);
return a[x];
}
}
void merge(int a[], int x, int y) {
x = getFather(a, x);
y = getFather(a, y);
a[x] = y;
}
int haveCommonAncestor(int a[], int x, int y) {
return (getFather(a, x) == getFather(a, y) ? 1 : 0);
}
int main () {
int m, n; //m点,n边
int i;
struct linklist edges, tree;
struct edge t;
int father[1000];
initLinkList(&edges);
initLinkList(&tree);
scanf("%d%d", &m, &n);
for (i = 0; i < n; ++i) {
scanf("%d%d%d", &t.start, &t.end, &t.weight);
insert(&edges, t);
}
printf("Input:\n");
dump(&edges);
struct edge *p = edges.head->next;
printf("\nBuilding tree...\n");
initUnionSet(father, m);
int count = 0;
while (p != NULL) {
printf("p = %p, ", p);
printf("edge (%d, %d), %d: ", p->start, p->end, p->weight);
if (0 == haveCommonAncestor(father, p->start, p->end)) {
printf("added in.\n");
insert(&tree, *p);
merge(father, p->start, p->end);
count++;
printf("count = %d\n", count);
if (count == m - 1) {
break;
}
}
else {
printf("ignored.\n");
}
p = p->next;
}
printf("\nFinal result:\n");
dump(&tree);
return 0;
}
#include <stdlib.h>
/*
* Kruskal贪心算法求最小生成树
* 测试输入数据:
6 10 //6个顶点10条边
1 5 2 //从顶点1到顶点5的边权重为2
2 4 3
4 5 1
0 3 6
2 3 7
5 2 6
4 0 7
1 3 5
1 2 4
3 5 9
*/
//链表
struct edge {
int start, end, weight;
struct edge *next;
};
struct linklist {
struct edge *head, *tail;
};
void initLinkList(struct linklist *p) {
p->head = (struct edge *) malloc(sizeof(struct edge));
p->head->next = NULL;
p->tail = p->head;
}
void insert(struct linklist *p, struct edge e) {
struct edge *q = p->head, *t;
while (q->next != NULL) {
if (q->next->weight > e.weight) {
break;
}
q = q->next;
}
t = (struct edge *) malloc(sizeof(struct edge));
*t = e;
t->next = q->next;
q->next = t;
if (t->next == NULL) {
p->tail = t;
}
}
void dump(struct linklist *p) {
struct edge *q = p->head->next;
while (q != NULL) {
printf("q = %p, ", q);
printf("edge (%d, %d), %d\n", q->start, q->end, q->weight);
q = q->next;
}
}
//并查集
void initUnionSet(int a[], int n) {
int i;
for (i = 0; i < n; ++i) {
a[i] = i;
}
}
int getFather(int a[], int x) {
if (a[x] == x) {
return x;
}
else {
a[x] = getFather(a, a[x]);
return a[x];
}
}
void merge(int a[], int x, int y) {
x = getFather(a, x);
y = getFather(a, y);
a[x] = y;
}
int haveCommonAncestor(int a[], int x, int y) {
return (getFather(a, x) == getFather(a, y) ? 1 : 0);
}
int main () {
int m, n; //m点,n边
int i;
struct linklist edges, tree;
struct edge t;
int father[1000];
initLinkList(&edges);
initLinkList(&tree);
scanf("%d%d", &m, &n);
for (i = 0; i < n; ++i) {
scanf("%d%d%d", &t.start, &t.end, &t.weight);
insert(&edges, t);
}
printf("Input:\n");
dump(&edges);
struct edge *p = edges.head->next;
printf("\nBuilding tree...\n");
initUnionSet(father, m);
int count = 0;
while (p != NULL) {
printf("p = %p, ", p);
printf("edge (%d, %d), %d: ", p->start, p->end, p->weight);
if (0 == haveCommonAncestor(father, p->start, p->end)) {
printf("added in.\n");
insert(&tree, *p);
merge(father, p->start, p->end);
count++;
printf("count = %d\n", count);
if (count == m - 1) {
break;
}
}
else {
printf("ignored.\n");
}
p = p->next;
}
printf("\nFinal result:\n");
dump(&tree);
return 0;
}
欢迎扫码关注:
转载请注明出自 ,如是转载文则注明原出处,谢谢:)
RSS订阅地址: https://www.felix021.com/blog/feed.php 。
不过还是Prim用的多
p.s. 其实还是Kruskal用得多。